This tab shows an overview of the selected study/paper [more details]
Reference

Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis.

Paper Id
COSP30727
Authors
Zhou D,Yang L,Zheng L,Ge W,Li D,Zhang Y,Hu X,Gao Z,Xu J,Huang Y,Hu H,Zhang H,Zhang H,Liu M,Yang H,Zheng L and Zheng S
Affiliation
The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, the Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China.
Journal
PloS one 2013;8(1):e53310
ISSN:1932-6203
PUBMED:23301059
Abstract
Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs) were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis.
Paper Status
Curated
Genes Analysed
71
Mutated Samples
2
Total No. of Samples
2
This tab shows genes with mutations in the selected study/paper [more details]
Genes Samples CDS Mutation AA Mutation
This tab shows genes without mutations in the selected study/paper [more details]
Non-Mutant Genes Gene Id (COSG)
This tab shows samples without mutations in the selected study/paper [more details]
Non-Mutant Samples Sample Id (COSS)
This tab shows mutated samples in the selected study/paper [more details]
Sample Name Mutation Count
This tab shows non coding variant in the selected study/paper [more details]
Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq
This tab shows the gene expression and copy number variation data for this study. [more details]

Table Information

Hide

The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.

CNV
This tab shows a summary table with counts (number of samples) for CNV gain/loss and under/over expression for all genes. [more details]

The results shown in this table are derived from all copy number data. This includes non-numeric data with descriptive definitions of gain/loss.

  Copy Number Expression
Gene Gain Loss Tested Over Under Tested
This tab shows the fusion mutations observed in this sample [more details]
Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type