This tab shows an overview of the selected study/paper [more details]
Reference

Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent disease.

Paper Id
COSP29755
Authors
Castellarin M,Milne K,Zeng T,Tse K,Mayo M,Zhao Y,Webb JR,Watson PH,Nelson BH and Holt RA
Affiliation
BC Cancer Agency, Michael Smith Genome Sciences Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Journal
The Journal of pathology 2012
ISSN:1096-9896
PUBMED:22996961
Abstract
High-grade serous carcinoma (HGSC) is the most common and fatal form of ovarian cancer. While most tumors are highly sensitive to cytoreductive surgery and platinum- and taxane-based chemotherapy, the majority of patients experience recurrence of treatment-resistant tumors. The clonal origin and mutational adaptations associated with recurrent disease are poorly understood. We performed whole exome sequencing on tumor cells harvested from ascites at three time points (primary, first recurrence and second recurrence) for three HGSC patients receiving standard treatment. Somatic point mutations and small insertions and deletions were identified by comparison to constitutional DNA. The clonal structure and evolution of tumors were inferred from patterns of mutant allele frequencies. TP53 mutations were predominant in all patients at all time points, consistent with the known founder role of this gene. Tumors from all three patients also harbored mutations associated with cell cycle checkpoint function and Golgi vesicle trafficking. There was convergence of germline and somatic variants within the DNA repair, ECM, cell cycle control and Golgi vesicle pathways. The vast majority of somatic variants found in recurrent tumors were present in primary tumors. Our findings highlight both known and novel pathways that are commonly mutated in HGSC. Moreover, they provide the first evidence at single nucleotide resolution that recurrent HGSC arises from multiple clones present in the primary tumor with negligible accumulation of new mutations during standard treatment. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Paper Status
Curated
Genes Analysed
119
Mutated Samples
3
Total No. of Samples
3
This tab shows genes with mutations in the selected study/paper [more details]
Genes Samples CDS Mutation AA Mutation
This tab shows genes without mutations in the selected study/paper [more details]
Non-Mutant Genes Gene Id (COSG)
This tab shows samples without mutations in the selected study/paper [more details]
Non-Mutant Samples Sample Id (COSS)
This tab shows mutated samples in the selected study/paper [more details]
Sample Name Mutation Count
This tab shows non coding variant in the selected study/paper [more details]
Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq
This tab shows the copy number variation data for this study. Only variants (classified as gain or loss) are listed. [more details]
CNV Gene Sample Position Minor Allele Copy Number Average Ploidy

1. N/A represents cases where average ploidy value is not available( mostly ICGC samples). For some TCGA samples where minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, Ascat algorithm is used to calculate the average ploidy.

3. For CGP samples, Picnic algorithm is used to calculate the average ploidy.

Type
This tab shows a table of count of samples having gain or loss for all genes [more details]
Gene Gain Samples Loss Samples Samples Tested
This tab shows the fusion mutations observed in this sample [more details]
Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type