GRCh38 · COSMIC v83

Overview

This section shows a general overview of information for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the WTSI Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Reference
The transcriptional landscape and mutational profile of lung adenocarcinoma.
Paper ID
COSP29719
Authors
Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, Yu SB, Kim J, Lee ER, Kang CH, Park IK, Rhee H, Lee SH, Kim JI, Kang JH and Kim YT
Affiliation
Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 110-799, Korea;
Journal
Genome research 2012;22(11):2109-19
ISSN:1549-5469
PUBMED:22975805
Abstract
All cancers harbor molecular alterations in their genomes. The transcriptional consequences of these somatic mutations have not yet been comprehensively explored in lung cancer. Here we present the first large scale RNA sequencing study of lung adenocarcinoma, demonstrating its power to identify somatic point mutations as well as transcriptional variants such as gene fusions, alternative splicing events, and expression outliers. Our results reveal the genetic basis of 200 lung adenocarcinomas in Koreans including deep characterization of 87 surgical specimens by transcriptome sequencing. We identified driver somatic mutations in cancer genes including EGFR, KRAS, NRAS, BRAF, PIK3CA, MET, and CTNNB1. Candidates for novel driver mutations were also identified in genes newly implicated in lung adenocarcinoma such as LMTK2, ARID1A, NOTCH2, and SMARCA4. We found 45 fusion genes, eight of which were chimeric tyrosine kinases involving ALK, RET, ROS1, FGFR2, AXL, and PDGFRA. Among 17 recurrent alternative splicing events, we identified exon 14 skipping in the proto-oncogene MET as highly likely to be a cancer driver. The number of somatic mutations and expression outliers varied markedly between individual cancers and was strongly correlated with smoking history of patients. We identified genomic blocks within which gene expression levels were consistently increased or decreased that could be explained by copy number alterations in samples. We also found an association between lymph node metastasis and somatic mutations in TP53. These findings broaden our understanding of lung adenocarcinoma and may also lead to new diagnostic and therapeutic approaches.
Paper Status
Curated
Genes Analysed
4358
Mutated Samples
87
Total No. of Samples
87

Mutation Matrix

This section shows the correlation plot between the top 20 genes and samples. There is more information in our help pages.

Genes

This table shows genes with mutations in the selected study/paper [more details]
Genes Mutated Samples
This table shows genes without mutations in the selected study/paper [more details]

Table Information

Hide

This is a whole exome/systematic screen paper and the negatives for this paper should be inferred.

Variants

This tab shows genes with mutations in the selected study/paper [more details]

Genes Samples CDS Mutation AA Mutation

This tab shows non coding variant in the selected study/paper [more details]

Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq FATHMM-MKL

This tab shows the gene expression and copy number variation data for this study [more details]

Table Information

Hide

The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.

CNV

This table lists the samples in the selected study which have low/high methylation for each gene. [more details]

No data

This tab shows the fusion mutations observed in this sample [more details]

Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type

Samples

This table shows mutated samples in the selected study/paper.

Sample Name Mutation Count

This table shows samples without mutations in the selected study/paper.

Non-Mutant Samples Sample Id (COSS)