This tab shows an overview of the selected study/paper [more details]
Reference

The mutational landscape of lethal castration-resistant prostate cancer.

Paper Id
COSP29059
Authors
Grasso CS,Wu YM,Robinson DR,Cao X,Dhanasekaran SM,Khan AP,Quist MJ,Jing X,Lonigro RJ,Brenner JC,Asangani IA,Ateeq B,Chun SY,Siddiqui J,Sam L,Anstett M,Mehra R,Prensner JR,Palanisamy N,Ryslik GA,Vandin F,Raphael BJ,Kunju LP,Rhodes DR,Pienta KJ,Chinnaiyan AM and Tomlins SA
Affiliation
1] Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2] Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [3].
Journal
Nature 2012
ISSN:1476-4687
PUBMED:22722839
Abstract
Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.
Paper Status
Curated
Genes Analysed
5404
Mutated Samples
75
Total No. of Samples
171
This tab shows the correlation plot between top 20 genes and samples [more details]
This tab shows genes with mutations in the selected study/paper [more details]
Genes Samples CDS Mutation AA Mutation
This tab shows genes without mutations in the selected study/paper [more details]
Non-Mutant Genes Gene Id (COSG)
This tab shows samples without mutations in the selected study/paper [more details]
Non-Mutant Samples Sample Id (COSS)
This tab shows mutated samples in the selected study/paper [more details]
Sample Name Mutation Count
This tab shows non coding variant in the selected study/paper [more details]
Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq
This tab shows the gene expression and copy number variation data for this study. [more details]

Table Information

Hide

The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.

CNV
This tab shows the fusion mutations observed in this sample [more details]
Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type