GRCh38 · COSMIC v82


This section shows a general overview of information for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the WTSI Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma.
Paper ID
Hedberg ML, Goh G, Chiosea SI, Bauman JE, Freilino ML, Zeng Y, Wang L, Diergaarde BB, Gooding WE, Lui VW, Herbst RS, Lifton RP and Grandis JR
The Journal of clinical investigation 2016;126(1):169-80
Background: Recurrence and/or metastasis occurs in more than half of patients with head and neck squamous cell carcinoma (HNSCC), and these events pose the greatest threats to long-term survival. We set out to identify genetic alterations that underlie recurrent/metastatic HNSCC.Methods: Whole-exome sequencing (WES) was performed on genomic DNA extracted from fresh-frozen whole blood and patient-matched tumor pairs from 13 HNSCC patients with synchronous lymph node metastases and 10 patients with metachronous recurrent tumors. Mutational concordance within and between tumor pairs was used to analyze the spatiotemporal evolution of HNSCC in individual patients and to identify potential therapeutic targets for functional evaluation.Results: Approximately 86% and 60% of single somatic nucleotide variants (SSNVs) identified in synchronous nodal metastases and metachronous recurrent tumors, respectively, were transmitted from the primary index tumor. Genes that were mutated in more than one metastatic or recurrent tumor, but not in the respective primary tumors, include C17orf104, inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3), and discoidin domain receptor tyrosine kinase 2 (DDR2). Select DDR2 mutations have been shown to confer enhanced sensitivity to SRC-family kinase (SFK) inhibitors in other malignancies. Similarly, HNSCC cell lines harboring endogenous and engineered DDR2 mutations were more sensitive to the SFK inhibitor dasatinib than those with WT DDR2.Conclusion: In this WES study of patient-matched tumor pairs in HNSCC, we found synchronous lymph node metastases to be genetically more similar to their paired index primary tumors than metachronous recurrent tumors. This study outlines a compendium of somatic mutations in primary, metastatic, and/or recurrent HNSCC cancers, with potential implications for precision medicine approaches.Funding: National Cancer Institute, American Cancer Society, Agency for Science, Technology and Research of Singapore, and Gilead Sciences Inc.
Paper Status
Genes Analysed
Mutated Samples
Total No. of Samples

Mutation Matrix

This section shows the correlation plot between the top 20 genes and samples. There is more information in our help pages.


This table shows genes with mutations in the selected study/paper [more details]
Genes Mutated Samples
This table shows genes without mutations in the selected study/paper [more details]

Table Information


The negatives shown on this page are only from targeted gene screens, but does not include negatives from whole exome/systematic screens( these negatives should be inferred ).

Non-Mutant Genes Gene Id (COSG)


This tab shows genes with mutations in the selected study/paper [more details]

Genes Samples CDS Mutation AA Mutation

This tab shows non coding variant in the selected study/paper [more details]

Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq FATHMM-MKL

This tab shows the gene expression and copy number variation data for this study [more details]

Table Information


The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.


This table lists the samples in the selected study which have low/high methylation for each gene. [more details]

No data

This tab shows the fusion mutations observed in this sample [more details]

Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type


This table shows mutated samples in the selected study/paper.

Sample Name Mutation Count

This table shows samples without mutations in the selected study/paper.

Non-Mutant Samples Sample Id (COSS)