GRCh38 · COSMIC v98


This section shows a summary for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer.
Paper ID
Wagner AH, Devarakonda S, Skidmore ZL, Krysiak K, Ramu A, Trani L, Kunisaki J, Masood A, Waqar SN, Spies NC, Morgensztern D, Waligorski J, Ponce J, Fulton RS, Maggi LB, Weber JD, Watson MA, O'Conor CJ, Ritter JH, Olsen RR, Cheng H, Mukhopadhyay A, Can I, Cessna MH, Oliver TG, Mardis ER, Wilson RK, Griffith M, Griffith OL and Govindan R
McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA.
Nature communications, 2018;9(1):3787
ISSN: 2041-1723
PMID: 30224629 (view at PubMed or Europe PMC)
Nearly all patients with small cell lung cancer (SCLC) eventually relapse with chemoresistant disease. The molecular mechanisms driving chemoresistance in SCLC remain un-characterized. Here, we describe whole-exome sequencing of paired SCLC tumor samples procured at diagnosis and relapse from 12 patients, and unpaired relapse samples from 18 additional patients. Multiple somatic copy number alterations, including gains in ABCC1 and deletions in MYCL, MSH2, and MSH6, are identifiable in relapsed samples. Relapse samples also exhibit recurrent mutations and loss of heterozygosity in regulators of WNT signaling, including CHD8 and APC. Analysis of RNA-sequencing data shows enrichment for an ASCL1-low expression subtype and WNT activation in relapse samples. Activation of WNT signaling in chemosensitive human SCLC cell lines through APC knockdown induces chemoresistance. Additionally, in vitro-derived chemoresistant cell lines demonstrate increased WNT activity. Overall, our results suggest WNT signaling activation as a mechanism of chemoresistance in relapsed SCLC.
Paper Status