GRCh38 · COSMIC v92


This section shows a general overview of information for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Whole genome and whole transcriptome genomic profiling of a metastatic eccrine porocarcinoma.
Paper ID
Thibodeau ML, Bonakdar M, Zhao E, Mungall KL, Reisle C, Zhang W, Bye MH, Thiessen N, Bleile D, Mungall AJ, Ma YP, Jones MR, Renouf DJ, Lim HJ, Yip S, Ng T, Ho C, Laskin J, Marra MA, Schrader KA and Jones SJM
1Department of Medical Genetics, University of British Columbia, C201-4500 Oak Street, Vancouver, BC V6H 3N1 Canada.
NPJ precision oncology, 2018;2(1):8
ISSN: 2397-768X
PMID: 29872726 (view at PubMed or Europe PMC)
Eccrine porocarcinomas (EPs) are rare malignant tumours of the intraepidermic sweat gland duct and most often arise from benign eccrine poromas. Some recurrent somatic genomic events have been identified in these malignancies, but very little is known about the complexity of their molecular pathophysiology. We describe the whole genome and whole transcriptome genomic profiling of a metastatic EP in a 66-year-old male patient with a previous history of localized porocarcinoma of the scalp. Whole genome and whole transcriptome genomic profiling was performed on the metastatic EP. Whole genome sequencing was performed on blood-derived DNA in order to allow a comparison between germline and somatic events. We found somatic copy losses of several tumour suppressor genes including <i>APC</i>, <i>PTEN</i> and <i>CDKN2A</i>, <i>CDKN2B</i> and <i>CDKN1A</i>. We identified a somatic hemizygous <i>CDKN2A</i> pathogenic splice site variant. De novo transcriptome assembly revealed abnormal splicing of <i>CDKN2A</i> p14<sup>ARF</sup> and p16<sup>INK4a</sup>. Elevated expression of oncogenes <i>EGFR</i> and <i>NOTCH1</i> was noted and no somatic mutations were found in these genes. Wnt pathway somatic alterations were also observed. In conclusion, our results suggest that the molecular pathophysiology of malignant EP features high complexity and subtle interactions of multiple key genes. Cell cycle dysregulation and <i>CDKN2A</i> loss of function was found to be a new potential driver in EP tumourigenesis. Moreover, the combination of somatic copy number variants and abnormal gene expression perhaps partly related to epigenetic mechanisms, all likely contribute to the development of this rare malignancy in our patient.
Paper Status
Genes Analysed
Mutated Samples
Total No. of Samples

Mutation Matrix

This section shows the correlation plot between the top 20 genes and samples. There is more information in our help pages.


This table shows genes with mutations in the selected study/paper [more details]
Genes Mutated Samples
This table shows genes without mutations in the selected study/paper [more details]

Table Information


This is a whole exome/systematic screen paper and the negatives for this paper should be inferred.


This tab shows genes with mutations in the selected study/paper [more details]

Genes Samples CDS Mutation AA Mutation

This tab shows non coding variant in the selected study/paper [more details]

Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq FATHMM-MKL

This tab shows the gene expression and copy number variation data for this study [more details]

Table Information


The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.


This table lists the samples in the selected study which have low/high methylation for each gene. [more details]

No data

This tab shows the fusion mutations observed in this sample [more details]

Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type


This table shows mutated samples in the selected study/paper.

Sample Name Mutation Count

This table shows samples without mutations in the selected study/paper.

Non-Mutant Samples Sample Id (COSS)