GRCh38 · COSMIC v99


This section shows a summary for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Genomic and epigenomic heterogeneity of hepatocellular carcinoma.
Paper ID
Lin DC, Mayakonda A, Dinh HQ, Huang P, Lin L, Liu X, Ding LW, Wang J, Berman B, Song E, Yin D and Koeffler HP
Cedars-Sinai Medical Center
Cancer research, 2017
ISSN: 1538-7445
PMID: 28302680 (view at PubMed or Europe PMC)
Understanding the intratumoral heterogeneity of hepatocellular carcinoma (HCC) is instructive for developing personalized therapy and identifying molecular biomarkers. Here we applied whole-exome sequencing to 69 samples from 11 patients to resolve the genetic architecture of subclonal diversification. Spatial genomic diversity was found in all 11 HCC cases, with 29% of driver mutations being heterogeneous, including TERT, ARID1A, NOTCH2, and STAG2. Similar with other cancer types, TP53 mutations were always shared between all tumor regions i.e. located on the "trunk" of the evolutionary tree. In addition, we found that variants within several drug targets such as KIT, SYK and PIK3CA were mutated in a fully clonal manner, indicating their therapeutic potentials for HCC. Temporal dissection of mutational signatures suggested that mutagenic processes associated with exposure to aristolochic acid and aflatoxin might play a more important role in early, as opposed to late, stages of HCC development. Moreover, we observed extensive intratumoral epigenetic heterogeneity in HCC based on multiple independent analytical methods and showed that intratumoral methylation heterogeneity might play important roles in the biology of HCC cells. Our results also demonstrated prominent heterogeneity of intratumoral methylation even in a stable HCC genome. Together, these findings highlight widespread intratumoral heterogeneity at both the genomic and epigenomic levels in HCC and provide an important molecular foundation for better understanding the pathogenesis of this malignancy.
Paper Status