GRCh38 · COSMIC v91

Overview

This section shows a general overview of information for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Reference
Recurrent CDKN1B (p27) mutations in hairy cell leukemia.
Paper ID
COSP39957
Authors
Dietrich S, Hüllein J, Lee SC, Hutter B, Gonzalez D, Jayne S, Dyer MJ, Oleś M, Else M, Liu X, Słabicki M, Wu B, Troussard X, Dürig J, Andrulis M, Dearden C, von Kalle C, Granzow M, Jauch A, Fröhling S, Huber W, Meggendorfer M, Haferlach T, Ho AD, Richter D, Brors B, Glimm H, Matutes E, Abdel Wahab O and Zenz T
Affiliation
Department of Medicine V, University Hospital Heidelberg, Genome Biology Unit, European Molecular Biology Laboratory, and Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany;
Journal
Blood, 2015;126(8):1005-8
ISSN: 1528-0020
PMID: 26065650 (view at PubMed or Europe PMC)
Abstract
Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.
Paper Status
Curated
Genes Analysed
267
Mutated Samples
82
Total No. of Samples
87

Mutation Matrix

This section shows the correlation plot between the top 20 genes and samples. There is more information in our help pages.

Genes

This table shows genes with mutations in the selected study/paper [more details]
Genes Mutated Samples
This table shows genes without mutations in the selected study/paper [more details]

Table Information

Hide

The negatives shown on this page are only from targeted gene screens, but does not include negatives from whole exome/systematic screens( these negatives should be inferred ).

Non-Mutant Genes Gene Id (COSG)

Variants

This tab shows genes with mutations in the selected study/paper [more details]

Genes Samples CDS Mutation AA Mutation

This tab shows non coding variant in the selected study/paper [more details]

Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq FATHMM-MKL

This tab shows the gene expression and copy number variation data for this study [more details]

Table Information

Hide

The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.

CNV

This table lists the samples in the selected study which have low/high methylation for each gene. [more details]

No data

This tab shows the fusion mutations observed in this sample [more details]

Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type

Samples

This table shows mutated samples in the selected study/paper.

Sample Name Mutation Count

This table shows samples without mutations in the selected study/paper.

Non-Mutant Samples Sample Id (COSS)