GRCh38 · COSMIC v99

Summary

This section shows a summary for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Reference
MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition.
Paper ID
COSP33781
Authors
Wagle N, Van Allen EM, Treacy DJ, Frederick DT, Cooper ZA, Taylor-Weiner A, Rosenberg M, Goetz EM, Sullivan RJ, Farlow DN, Friedrich DC, Anderka K, Perrin D, Johannessen CM, McKenna A, Cibulskis K, Kryukov G, Hodis E, Lawrence DP, Fisher S, Getz G, Gabriel SB, Carter SL, Flaherty KT, Wargo JA and Garraway LA
Affiliation
1Department of Medical Oncology, Dana-Farber Cancer Institute; 2Department of Medicine, Brigham and Women's Hospital; 3Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; 4Broad Institute of Harvard and MIT; and 5Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts.
Journal
Cancer discovery, 2014;4(1):61-8
ISSN: 2159-8290
PMID: 24265154 (view at PubMed or Europe PMC)
Abstract
Treatment of BRAF-mutant melanoma with combined dabrafenib and trametinib, which target RAF and the downstream MAP-ERK kinase (MEK)1 and MEK2 kinases, respectively, improves progression-free survival and response rates compared with dabrafenib monotherapy. Mechanisms of clinical resistance to combined RAF/MEK inhibition are unknown. We performed whole-exome sequencing (WES) and whole-transcriptome sequencing (RNA-seq) on pretreatment and drug-resistant tumors from five patients with acquired resistance to dabrafenib/trametinib. In three of these patients, we identified additional mitogen-activated protein kinase (MAPK) pathway alterations in the resistant tumor that were not detected in the pretreatment tumor, including a novel activating mutation in MEK2 (MEK2(Q60P)). MEK2(Q60P) conferred resistance to combined RAF/MEK inhibition in vitro, but remained sensitive to inhibition of the downstream kinase extracellular signal-regulated kinase (ERK). The continued MAPK signaling-based resistance identified in these patients suggests that alternative dosing of current agents, more potent RAF/MEK inhibitors, and/or inhibition of the downstream kinase ERK may be needed for durable control of BRAF-mutant melanoma.
Paper Status
Curated