GRCh38 · COSMIC v92

Summary

This section shows a summary for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Reference
Exomic Sequencing of Four Rare Central Nervous System Tumor Types.
Paper ID
COSP31671
Authors
Bettegowda C, Agrawal N, Jiao Y, Wang Y, Wood LD, Rodriguez FJ, Hruban RH, Gallia GL, Binder ZA, Riggins CJ, Salmasi V, Riggins GJ, Reitman ZJ, Rasheed A, Keir S, Shinjo S, Marie S, McLendon R, Jallo G, Vogelstein B, Bigner D, Yan H, Kinzler KW and Papadopoulos N
Affiliation
Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. cbetteg1@jhmi.edu
Journal
Oncotarget, 2013;4(4):572-83
ISSN: 1949-2553
PMID: 23592488 (view at PubMed or Europe PMC)
Abstract
A heterogeneous population of uncommon neoplasms of the central nervous system (CNS) cause significant morbidity and mortality. To explore their genetic origins, we sequenced the exomes of 12 pleomorphic xanthoastrocytomas (PXA), 17 non-brainstem pediatric glioblastomas (PGBM), 8 intracranial ependymomas (IEP) and 8 spinal cord ependymomas (SCEP). Analysis of the mutational spectra revealed that the predominant single base pair substitution was a C:G>T:A transition in each of the four tumor types. Our data confirm the critical roles of several known driver genes within CNS neoplasms, including TP53 and ATRX in PGBM, and NF2 in SCEPs. Additionally, we show that activating BRAF mutations play a central role in both low and high grade glial tumors. Furthermore, alterations in genes coding for members of the mammalian target of rapamycin (mTOR) pathway were observed in 33% of PXA. Our study supports the hypothesis that pathologically similar tumors arising in different age groups and from different compartments may represent distinct disease processes with varied genetic composition.
Paper Status
Curated