GRCh38 · COSMIC v94

Summary

This section shows a summary for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Reference
Independent Tumor Origin in Two Cases of Synchronous Bilateral Clear Cell Renal Cell Carcinoma.
Paper ID
COSP41691
Authors
Ji Z, Zhao J, Zhao T, Han Y, Zhang Y and Ye H
Affiliation
Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital medical University, Beijing, China.
Journal
Scientific reports, 2016;6:29267
ISSN: 2045-2322
PMID: 27383411 (view at PubMed or Europe PMC)
Abstract
Bilateral renal cell carcinomas (RCCs) pose a challenge for clinical treatment and management. Most bilateral RCCs are sporadic, and do not show a hereditary pattern indicative of VHL syndrome or other inherited cancers. The origin and evolution of these sporadic bilateral RCCs remains elusive. We obtained normal and tumor samples from two male patients suffering from early stage synchronous bilateral clear cell RCC (ccRCC), and analyzed genomic DNA using whole exome sequencing and bisulfite pyrosequencing. We detected distinct 3p loss of heterozygosity (LOH) in both tumors in each patient. Two tumors within the same patient harbored distinct driver mutations and different CpG hypermethylation sites in the VHL promoter. Moreover, tumors exhibit independent evolutionary trajectories. Therefore, distinct 3p LOH, combined with contingent driver gene mutations and independent VHL hypermethylation, led to independent tumor origin and parallel evolution of bilateral ccRCC in these two patients. Our results indicate that tumors in these two cases were not due to common germline oncogenic mutations. They were results of multiple de novo mutations in each kidney, rather than primary ccRCC with contralateral renal metastasis. Therefore, histopathologic and genetic profiling from single tumor specimen may underestimate the mutational burden and somatic heterogeneity of bilateral ccRCCs.
Paper Status
Curated