GRCh38 · COSMIC v94


This section shows a summary for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the Sanger Institute Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

Molecular characterization of metastatic exon 11 mutant gastrointestinal stromal tumors (GIST) beyond KIT/PDGFRa genotype evaluated by next generation sequencing (NGS).
Paper ID
Saponara M, Urbini M, Astolfi A, Indio V, Ercolani G, Del Gaudio M, Santini D, Pirini MG, Fiorentino M, Nannini M, Lolli C, Mandrioli A, Gatto L, Brandi G, Biasco G, Pinna AD and Pantaleo MA
Department of Specialized, Experimental, and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Oncotarget, 2015;6(39):42243-57
ISSN: 1949-2553
PMID: 26544626 (view at PubMed or Europe PMC)
About 85% of GISTs are associated with KIT and PDGFRα gene mutations, which predict response to tyrosine kinase inhibitors. Although the outcomes in patients affected by GIST have dramatically improved, tumor progression control still remains a challenge. The aim of this study is the genomic characterization of individual metastatic KIT-exon 11-mutant GIST to identify additional aberrations and simultaneous molecular events representing potential therapeutic targets.Seven patients with metastatic GIST were studied with whole transcriptome sequencing and copy number analysis. Somatic single nucleotide variations were called; however, no shared mutated genes were detected except KIT. Almost all patients showed loss of genomic regions containing tumor suppressor genes, sometimes coupled with single nucleotide mutation of the other allele. Additionally, six fusion transcripts were found and three patients showed amplifications involving known oncogenes.Evaluating the concordance between CN status and mRNA expression levels, we detected overexpression of CCND2 and EGFR and silencing of CDKN2A, CDKN2C, SMARCB1, PTEN and DMD. Altered expression of these genes could be responsible for aberrant activation of signaling pathways that support tumor growth. In this work, we assessed the effect of Hedgehog pathway inhibition in GIST882 cells, which causes decrement of cell viability associated with reduction of KIT expression.Additional genomic alterations not previously reported in GIST were found even if not shared by all samples. This contributes to a more detailed molecular understanding of this disease, useful for identification of new targets and novel therapeutics and representing a possible point of departure for a truly individualized clinical approach.
Paper Status