GRCh38 · COSMIC v82


This section shows a general overview of information for the selected study (COSU identifier) or publication (COSP identifier). Studies may have been performed by the WTSI Cancer Genome Project, or imported from the ICGC/TCGA. You can see more information on the help pages.

High-resolution mutational profiling suggests the genetic validity of glioblastoma patient-derived pre-clinical models.
Paper ID
Yost SE, Pastorino S, Rozenzhak S, Smith EN, Chao YS, Jiang P, Kesari S, Frazer KA and Harismendy O
Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America.
PloS one 2013;8(2):e56185
Recent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are maintained between the primary tumor and the patient-derived tumor models. Here, we report the comprehensive identification of somatic coding mutations and copy number aberrations in four glioblastoma (GBM) primary tumors and their matched pre-clinical models: serum-free neurospheres, adherent cell cultures, and mouse xenografts. We developed innovative methods to improve the data quality and allow a strict comparison of matched tumor samples. Our analysis identifies known GBM mutations altering PTEN and TP53 genes, and new actionable mutations such as the loss of PIK3R1, and reveals clear patient-to-patient differences. In contrast, for each patient, we do not observe any significant remodeling of the mutational profile between primary to model tumors and the few discrepancies can be attributed to stochastic errors or differences in sample purity. Similarly, we observe ∼96% primary-to-model concordance in copy number calls in the high-cellularity samples. In contrast to previous reports based on gene expression profiles, we do not observe significant differences at the DNA level between in vitro compared to in vivo models. This study suggests, at a remarkable resolution, the genome-wide conservation of a patient's tumor genetics in various pre-clinical models, and therefore supports their use for the development and testing of personalized targeted therapies.
Paper Status
Genes Analysed
Mutated Samples
Total No. of Samples

Mutation Matrix

This section shows the correlation plot between the top 20 genes and samples. There is more information in our help pages.


This table shows genes with mutations in the selected study/paper [more details]
Genes Mutated Samples
This table shows genes without mutations in the selected study/paper [more details]

Table Information


This is a whole exome/systematic screen paper and the negatives for this paper should be inferred.


This tab shows genes with mutations in the selected study/paper [more details]

Genes Samples CDS Mutation AA Mutation

This tab shows non coding variant in the selected study/paper [more details]

Sample ID Sample Name ID NCV Annotation Zygosity Chromosome Genome start Genome stop Genome version Strand WT seq Mut seq FATHMM-MKL

This tab shows the gene expression and copy number variation data for this study [more details]

Table Information


The table currently shows only high value (numeric) copy number data. Copy number segments are excluded if the total copy number and minor allele values are unknown.

Click here to include all copy number data. For more detailed information about copy number data and gain/loss definitions click here.

Sample Gene Expression Expr Level (Z-Score)

Over Expressed; Z-Score > 2.0

Under Expressed; Z-Score < -2.0

Normal; Z-Score within the range -2.0 to 2.0

CN Type Minor Allele Copy Number CN Segment Posn. Average Ploidy

1. N/A represents cases where the average ploidy value is not available( mostly ICGC samples). For some TCGA samples where the minor allele information is not available the average ploidy value could not be calculated.

2. For TCGA samples, the ASCAT algorithm was used to calculate the average ploidy.

3. For CGP samples, the PICNIC algorithm was used to calculate the average ploidy.


This table lists the samples in the selected study which have low/high methylation for each gene. [more details]

No data

This tab shows the fusion mutations observed in this sample [more details]

Gene Sample Name Id Sample(COSS) CDS Mutation Somatic status Zygosity Validated Type


This table shows mutated samples in the selected study/paper.

Sample Name Mutation Count

This table shows samples without mutations in the selected study/paper.

Non-Mutant Samples Sample Id (COSS)